Journal Papers#:

2021

  1. Huang, H., Gao, Y., Ma, C., Jones, M. M., Zeeden, C., Ibarra, D. E., … & Wang, C. (2021). Organic carbon burial is paced by a~ 173-ka obliquity cycle in the middle to high latitudes. Science Advances, 7(28), eabf9489.
  2. Chengshan Wang, Robert M Hazen, Qiuming Cheng, Michael H Stephenson, Chenghu Zhou, Peter Fox, Shu-zhong Shen, Roland Oberhänsli, Zengqian Hou, Xiaogang Ma, Zhiqiang Feng, Junxuan Fan, Chao Ma, Xiumian Hu, Bin Luo, Juanle Wang, The Deep-time Digital Earth program: data-driven discovery in geosciences, National Science Review, 2021;, nwab027, https://doi.org/10.1093/nsr/nwab027
  3. Que, X., Ma, C.*, Ma, X. and Chen, Q., 2021. Parallel computing for Fast Spatiotemporal Weighted Regression. Computers & Geosciences, p.104723.

2020

  1. Que, X., Ma, X., Ma, C.*, and Chen, Q., 2020. A spatiotemporal weighted regression model (STWR v1.0) for analyzing local nonstationarity in space and time, Geosci. Model Dev., 13, 6149–6164, https://doi.org/10.5194/gmd-13-6149-2020.
  2. Ma, C., Vander Zanden, H.B., Wunder, M.B. and Bowen, G.J., 2020. assignR: An R package for isotope‐based geographic assignment. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.13426
  3. Ma, C., Meyers, S.R., Hinnov, L.A., Eldrett, J.S., Bergman, S.C. and Minisini, D., 2020. A method to decipher the time distribution in astronomically forced sedimentary couplets. Marine and Petroleum Geology, p.104399.
  4. Ma, C., Li, M., 2020. Astronomical time scale of the Turonian constrained by multiple paleoclimate proxies, Geoscience Frontiers, https://doi.org/10.1016/j.gsf.2020.01.013
  5. Ma, X., Ma, C. and Wang, C., 2020. A new structure for representing and tracking version information in a deep time knowledge graph. Computers & Geosciences, p.104620. https://doi.org/10.1016/j.cageo.2020.104620
  6. Yang, H., Huang, Y., Ma, C.*, Zhang, Z. and Wang, C., 2019. Recognition of Milankovitch cycles in XRF core-scanning records of the Late Cretaceous Nenjiang Formation from the Songliao Basin (northeastern China) and their paleoclimate implications. Journal of Asian Earth Sciences, p.104183. https://doi.org/10.1016/j.jseaes.2019.104183
  7. Zhang, C., Zhang, X., Santosh, M., Liu, D.D., Ma, C., Zeng, J.H., Jiang, S., Luo, Q., Kong, X.Y. and Liu, L.F., 2020. Zircon Hf-O-Li isotopes of granitoids from the Central Asian Orogenic Belt: Implications for supercontinent evolution. Gondwana Research, 83, pp.132-140.

2019

  1. Ma, C., Meyers, S.R. and Sageman, B.B., 2019. Testing Late Cretaceous astronomical solutions in a 15 million year astrochronologic record from North America. Earth and Planetary Science Letters, 513, pp.1-11.
  2. Matthias Sinnesael, David De Vleeschouwer, Christian Zeeden, Sietske J. Batenburg, Da Silva Anne-Christine, Niels J. de Winter, Jaume Dinarès-Turell, Anna Joy Drury, Gabriele Gambacorta, Frits Hilgen, Linda Hinnov, Alexander J.L. Hudson, David B. Kemp, Margriet Lantink, Jiri Laurin, Mingsong Li, Diederik Liebrand, Chao Ma, Stephen Meyers, Johannes Monkenbusch, Sandro Montanari, Theresa Nohl, Heiko Pälike, Damien Pas, Micha Ruhl, Nicolas Thibault, Maximilian Vahlenkamp, Luis Valero, Sébastien Wouters, Huaichun Wu, Philippe Claeys. 2019. The Cyclostratigraphy Intercomparison Project (CIP): consistency, merits and pitfalls. Earth-Science Reviews, p.102965.
  3. Zhang, C., Jiang, S., Liu, D.D., Chakrabarti, R., Zeng, J.H., Santosh, M., Luo, Q., Spencer, C.J., Ma, C., Liu, L.F. and Kong, X.Y., 2019. A novel model for silicon recycling in the lithosphere: Evidence from the Central Asian Orogenic Belt. Gondwana Research.

2018

  1. Carvajal, C.P., Soreghan, G.S., Isaacson, P.E., Ma, C., Hamilton, M.A., Hinnov, L.A. and Dulin, S.A., 2018. Atmospheric dust from the Pennsylvanian Copacabana Formation (Bolivia): A high-resolution record of paleoclimate and volcanism from northwestern Gondwana. Gondwana Research. 58, 105-121.

2017

  1. Ma, P., Wang, C., Meng, J., Ma, C., Zhao, X., Li, Y. and Wang, M., 2017. Late Oligocene-early Miocene evolution of the Lunpola Basin, central Tibetan Plateau, evidences from successive lacustrine records. Gondwana Research, 48, pp.224-236.
  2. Ma, C., Meyers, S.R. and Sageman, B.B., 2017. Theory of chaotic orbital variations confirmed by Cretaceous geological evidence. Nature, 542(7642), pp.468-470.

2015

  1. Eldrett, J.S., Ma C., Bergman, S.C., Lutz B., Gregory, J., Dodsworth, P., Phipps M., Hardas P., Minisini, D., Ozkan, A., Ramezani, J., Bowring, S.A., Kamo, S.L., Ferguson, K., Macaulay, C., Kelly, A.E., 2015, An astronomically calibrated stratigraphy of the Cenomanian, Turonian and earliest Coniacian from the Cretaceous Western Interior Seaway, USA: Implications for global chronostratigraphy. Cretaceous Research, v. 56, p.316-344.
  2. Eldrett, J.S., Ma, C., Bergman, S.C., Ozkan, A., Minisini, D., Lutz, B., Jackett, S.J., Macaulay, C., Kelly, A.E., 2015. Origin of limestone–marlstone cycles: astronomic forcing of organic-rich sedimentary rocks from the Cenomanian to early Coniacian of the Cretaceous Western Interior Seaway, USA. Earth and Planetary Science Letters, 423, 98–113.
  3. Chen, X., Wang, C., Wu, H., Kuhnt, W., Jia, J., Holbourn, A., Zhang, L. and Ma, C., 2015. Orbitally forced sea-level changes in the upper Turonian–lower Coniacian of the Tethyan Himalaya, southern Tibet. Cretaceous Research, 56, pp.691-701.

2014

  1. Ma C, Meyers, S.R., Sageman, B.B., Jicha B., Singer, B., 2014, Testing the Astronomical Time Scale for Oceanic Anoxic Event 2, and its Extension into Cenomanian Strata of the Western Interior Basin. GSA Bulletin. doi:10.1130/B30922.1

Before 2014

  1. Chen X., Wang C., Kuhnt W., Holbourn A., Huang Y., Ma C., 2011, Lithofacies, microfacies and depositional environments of Upper Cretaceous Oceanic Red Beds (Chuangde Formation) in southern Tibet. Sedimentary Geology, 235(2011) 100-110.
  2. Li, Y., Wang, C., Zhao, X., Yin, A., and Ma, C., 2012. Cenozoic thrust system, basin evolution, and uplift of the Tanggula Range in the Tuotuohe region, central Tibet. Gondwana Research, 22, pp.482-492.
  3. Li, Y., Wang, C., Ma, C., Xu, G. and Zhao, X., 2011, Balanced cross-section and crustal shortening analysis in the Tanggula-Tuotuohe Area, Northern Tibet. Journal of Earth Science, 22(1).
  4. Li, Y., Wang, C., Xu, G., Zhao, X., Ma, C., 2010, Crustal Shortening in the Tanggula-Tuotuohe Area, Northern Tibet, in Leech, M.L., and others, eds., Proceedings for the 25th Himalaya-Karakoram-Tibet Workshop: U.S. Geological Survey, OpenFile Report 2010-1099, 2 p.
  5. Li Y., Wang C., Li Y., Ma C., Wang L., Peng S., 2010, The Cretaceous tectonic event in the Qiangtang Basin and its implications for hydrocarbon accumulation. Petroleum Science, 7: 466-471.
  6. Ma C., Wang C., Chen X., Huang Y., 2009. Cyclostratigraphy study on the Upper Cretaceous of Southern Tibet, China: A case study of Gongza section. Earth Science Frontiers, 16(5): 134-142.
  7. Li L., Zhou X., Huang Y., Ma C., 2009, The deep-time research for Chromatometry: an example from the Cenomanian to Turonian Stages of the Cretaceous, Gongza Section, Southern Tibet. Earth Science Frontiers, 16(5): 153-159.

#All publications can be downloaded at Research Gate or requested through email.

Conferences Presentations:

  1. Zhang, S., Morrison, S.M., Prabhu, A., Ma, C., Huang, F., Gregory, D., Large, R.R., Hazen R.M., 2019. Natural clustering of pyrite with implications for its formational environment. AGU, San Francisco, CA, USA.
  2. Hazen, R.M., Morrison, S.M., Zhang, S., Boujibar, A., Prabhu, A., Fox, P.A., Eleish, A., Huang, F., Liu, C., Ma, C., Ma, X., Large, R.R., Gregory, D., Howell, S., Nittler, L.R., 2019. Data-driven discovery in mineralogy: Insights from natural kind clustering. AGU, San Francisco, CA, USA.
  3. Ma, C., Ma, X., 2019. Deep time climate data. ESIP 2019 Summer Meeting. Tacoma, WA. Poster.
  4. Ma, X., Ma, C., 2019. Towards a machine-readable knowledge base of deep time: challenges, current progress, and future work. ESIP Summer Meeting, Tacoma, WA, USA.
  5. Ma, C., Meyers, S.R., Sageman, B.B., 2018. Integrating Multiple Clocks and their Applications in Geology and Astronomy. Goldschmidt, Boston, MA, USA.
  6. Ma, C., Bowen, G.J., Vander Zanden, H. and Wunder, M., 2017. Uncertainty Estimation using Bootstrapped Kriging Predictions for Precipitation Isoscapes, AGU Fall Meeting.
  7. Ma, C., Meyers, S.R., Sageman, B.B., 2017. Constraining orbital solutions using the Cretaceous geological record. GSA Annual Meeting in Seattle, WA, USA.
  8. Liu, W., Wu, H., Hinnov, L.A., Ma, C., Li, M. 2017. Astronomically forced deposition in the Early Cretaceous Songliao synrift basin, China and its paleoclimatic implications. Joint 52nd Northeastern Annual Section / 51st North-Central Annual Section Meeting – 2017, Geological Society of America Abstracts with Programs. 49(2), doi: 10.1130/abs/2017NE-290749.
  9. Ma, C., Eldrett, J.S., Meyers, S.R., Bergman, S.C., Minisini, D., Hinnov, L.A., 2016. Centennial to Millennial scale Cycles in Mid-Cretaceous Greenhouse Climate. SEPM Research Conference: Oceanic Anoxic Events (OAEs), Austin, TX, USA.
  10. Meyers, S.R., Ma, C., Sageman, B.B., 2016. Grand Cycles of the Niobrara Formation: from Gilbert to Chaos. GSA Annual Meeting in Denver, Colorado, USA.
  11. Bergman, S.C., Eldrett, J.S., Ma, C., Minisini, D., Macaulay, C.I., Ozkan, A., Wright, S.C., Kelly, A. E., 2016. Cenomanian-Turonian Bentonites of the Boquillas Formation, Texas, USA: keys to understanding Carbonate Shelf deposition in a Greenhouse Climate. EGU General Assembly 2016.
  12. Jones, M.M., Sageman, B.B., Ma, C., Meyers, S.R., Calibrating the Late Cretaceous carbon cycle using astronomically tuned carbon isotope records at Demerara Rise (tropical North Atlantic), 2015 GSA North-Central Section Meeting.
  13. Ma, C., and Meyers, S.R., The Hunt for Pristine Cretaceous Astronomical Rhythms at Demerara Rise (Cenomanian-Coniacian), 2014 AGU Fall Meeting.
  14. Eldrett, J.S., Ma, C., Minisini, D., Lutz, B., Ozkan, A., and Bergman, S.C., 2014. Preliminary Findings for Century-Scale (Devries And Gleissberg) Solar Forcing on Late Cretaceous Climate. GSA Annual Meeting in Vancouver, British Columbia, Canada.
  15. Eldrett, J.S., Ma, C., Ozkan, A., Bergman, S.C., Minisini, D., Lutz, B., Macaulay, C., Jackett, S., and Kelly, A.E., 2014. Origin of Cretaceous Limestone-Marl Cycles: Orbital Forcing Of Cenomanian-Turonian Organic-Rich Sedimentary Rocks, Eagle Ford Formation, TX, USA. GSA Annual Meeting in Vancouver, British Columbia, Canada.
  16. Jones, M.M., Sageman, B.B., Ma, C., Meyers, S.R., 2014. Bridging the Turonian Gap in the Mesozoic Astronomical Time Scale via the Integration of Chemostratigraphic And Cyclostratigraphic Data from Demerara Rise. GSA Annual Meeting in Vancouver, British Columbia, Canada.
  17. Eldrett, J.S., Bergman, S.C., Ozkan, A., Minisini, D., Lutz, B., Macaulay, C.I., and Ma, C., 2014. An Integrated Stratigraphy of the Cenomanian-Turonian Eagle Ford Formation, Texas, USA – Part 2. AAPG ACE 2014.
  18. Eldrett, J.S., Bergman, S.C., Minisini, D., Macaulay, C.I., Ozkan, A., Lutz, B., and Ma, C., 2014. An Integrated Stratigraphy of the Cenomanian-Turonian Eagle Ford Formation, Texas, USA – Part 1. AAPG ACE 2014.
  19. Sageman, B.B., Joo, Y.J., Singer, B.S., Meyers, S.R., Ma, C., Jicha, B.R., Condon, D., 2013. Global Application of Revised Late Cretaceous Time Scale using Integrated Chemostratigraphy, Biostratigraphy and Geochronology. GSA Annual Meeting in Denver, Colorado, USA.
  20. Ma, C., Meyers, R.S., Sageman, B.B., Jicha, B., Singer, B., Joo, Y., 2012. An Extended Astronomical Time Scale for the Cenomanian/Turonian Boundary Interval, Cretaceous Western Interior Basin (USA). GSA Abstracts.
  21. Ma, C., Meyers, R.S., Sageman, B.B., Joo, Y., Singer, B., 2011. Testing the astronomical time scale for Oceanic Anoxic Event 2, and its extension into the Cenomanian. GSA.
  22. Ma, C., Wang, C., Chen, X., Huang, Y.,Zheng, Y., Wang, M., 2009. Cyclostratigraphy study on Upper Cretaceous Eastern Tethys. First Young Earth Scientists Congress.